21 research outputs found

    Atomic trajectory characterization in a fountain clock based on the spectrum of a hyperfine transition

    Full text link
    We describe a new method to determine the position of the atomic cloud during its interaction with the microwave field in the cavity of a fountain clock. The positional information is extracted from the spectrum of the F=3,mF=0 to F=4,mF=-1 hyperfine transition, which shows a position dependent asymmetry when the magnetic C-field is tilted by a few degrees with respect to the cavity axis. Analysis of this spectral asymmetry provides the horizontal center-of-mass position for the ensemble of atoms contributing to frequency measurements. With an uncertainty on the order of 0.1 mm, the obtained information is useful for putting limits on the systematic uncertainty due to distributed cavity phase gradients. The validity of the new method is demonstrated through experimental evidence.Comment: 6 figures, submitted to PR

    Optimization and performance of an optical cardio-magnetometer

    Get PDF
    Cardiomagnetometry is a growing field of noninvasive medical diagnostics that has triggered a need for affordable high-sensitivity magnetometers. Optical pumping magnetometers are promising candidates satisfying that need since it was demonstrated that they can map the heart magnetic field. For the optimization of such devices theoretical limits on the performance as well as an experimental approach is presented. The promising result is a intrinsic magnetometric sensitivity of 63 fT / Hz^1/2 a measurement bandwidth of 140 Hz and a spatial resolution of 28 mm

    Laser-based precision magnetometry in fundamental and applied research

    Get PDF
    In this paper we review research done by the recently founded Fribourg group for Atomic Physics (FRAP) using laser-assisted spin coherence spectroscopy of atomic samples in applied and fundamental physics. Spin coherence in optically pumped ensembles of paramagnetic atoms may be extremely long-lived when the samples are well shielded from external perturbations, like static or oscillating magnetic fields and field gradients, static electric fields, or crystalline field gradients. Conversely, such interactions may be studied with high sensitivity and precision when the decoherence that they produce is measured by optical means. We report on applications of this technique covering optical magnetometry for biomagnetic diagnostics, investigations of atomic impurities in quantum crystals, measurements of forbidden tensor polarizabilities and electric dipole moments, and the space-time resolved study of the diffusion of gas-phase atoms

    Optical magnetic resonance tomography and laser spectroscopy of cesium atoms trapped in solid helium

    Get PDF
    Die vorliegende Arbeit enthĂ€lt die Ergebnisse meiner Forschungsarbeit an der UniversitĂ€t Bonn und an der UniversitĂ€t Fribourg (Schweiz). Sie beinhaltend zwei Teile, entsprechend den unterschiedlichen Themen, die ich an diesen Orten behandelt habe. In Bonn arbeitete ich an optischer Magnetresonanztomographie von Atomen in der Gasphase, wĂ€hrend ich mich in Fribourg der Untersuchung von in festen Heliumkristallen eingeschlossenen Fremdatomen widmete. Die Resultate sind in Form von fĂŒnf Veröffentlichungen dargestellt: zwei publizierte, zwei zur Publikation akzeptierte und ein im Prozess der Einreichung befindlicher Artikel. Bei der im ersten Teil behandelten optischen Magnetresonanztomographie handelt es sich um eine neuartige Technik, die die zweidimensionale Bildgebung der Bewegung spin-polarisierter Al- kaliatome erlaubt. Sie unterscheidet sich von konventioneller Magnetresonanztomographie durch ihre optische PrĂ€paration und ihren optischen Nachweis von Spinpolarisation. Wir haben diese Technik angewandt, um Diffusionsprozesse von CĂ€siumatomen in Neongas zu studieren, dabei bestimmten wir die Diffusionskonstante dieses Systems zu 0.20(1) cm2/s unter Standardbedingungen. Der zweite Teil und zugleich Hauptteil dieser Arbeit befasst sich mit den optischen und magneto-optischen Eigenschaften von in festem He4 eingeschlossenen CĂ€siumatomen. Die Experimente wurden in der kubisch-raumzentrierten (bcc) oder in der hexagonal-dichtgepackten (hcp) Phase von festem Helium durchgefĂŒhrt. Matrixisolierte CĂ€siumatome befinden sich in einer blasen-Ă€hnlichen KavitĂ€t sphĂ€rischer Form, wenn sich das Atom in seinem radial symmetrischen 6S1/2-Grundzustand befindet. Die sphĂ€rische Symmetrie und die gĂ€nzlich unmagnetischen Eigenschaften von Helium erklĂ€ren die ungewöhnlich langen Spinrelaxationszeiten (≈ 1s), die in der bcc Phase beobachtet wurden. Im Gegensatz dazu sind in der hcp Phase gemessenen Magnetresonanzlinien signifikant breiter (um drei Grössenordnungen) und sie zeigen eine komplexe Unterstruktur bedingt durch eine kleine Deformation der Blasenform. Ein in der Literatur viel diskutiertes Problem ist die Fluoreszenz von Alkaliatomen in kondensiertem Helium: WĂ€hrend die schweren Alkalis Rb und Cs Fluoreszenz emittieren, konnte keine Fluoreszenz von den leichteren Alkalis beobachtet werden. Es wurde allgemein angenommen, dass die Emission beeintrĂ€chtigt ist durch die Bildung von Exciplex-MolekĂŒlen, d.h. von gebundenen ZustĂ€nden angeregter Alkaliatome mit einem oder mehreren Heliumatomen. Weiter wurde angenommen, dass fĂŒr Helium solche Exciplexe nicht existieren. In dieser Arbeit haben wir unsere Forschung auf die Untersuchung von atomarer D2-Anregung und der genauen Analyse der darauf folgenden Abregung des 6P3/2-Zustands ausgeweitet. Direkte D2-Emission war bisher nicht beobachtet worden. Man detektierte lediglich eine schwache D1-Emission nach erfolgter D2-Anregung, welche auf einen Zerfallskanal zum 6P1/2-Zustand hinweist. Durch die Ausweitung des WellenlĂ€ngenbereichs unseres Detektionssystems konnten wir nun zwei neue, breite Linien starker IntensitĂ€t bei 7130 cm-1 und 10520 cm-1 nachweisen. Die energetisch höher liegende Linie war kĂŒrzlich auch in kaltem Heliumdampf und in flĂŒssigem He II von einer in Kyoto ansĂ€ssigen Forschungsgruppe beobachtet worden. Der Ursprung dieser Linie liess sich dem Zerfall von Cs(A∏3/2)He2-Exciplexen zuordnen. Die zweite Linie war vorher nicht beobachtet worden und ist möglicherweise nur in festem Helium nachzuweisen. Um die neuen Linien zuordnen zu können, fĂŒhrten wir Modellrechnungen der Emissionsspektren von zerfallenden Cs*Hen-Exciplexen durch. Durch Vergleich mit den experimentellen Daten bestĂ€tigte sich die Zuordnung der Cs*He2-Linie. Die energetisch niedriger liegende Linie ist durch den Zer- fall eines anderen Exciplexes verursacht. Unsere Berechnungen legen nahe, dass es sich bei der Struktur um ein angeregtes CĂ€siumatom mit hantelförmiger Elektronenkonfiguration handelt, um dessen Taille sich ein Ring von n Heliumatomen befindet. Die genaue Zahl der n gebundenen Heliumatome liess sich aufgrund mangelnder Modellgenauigkeit bisher nicht bestimmen. Jedoch scheint Cs*He6 der wahrscheinlichste Kandidat zu sein. Cs*Hen-Exciplexe mit n > 2 waren zuvor nicht beobachtet worden. Dies schien die in der Literatur zu findenden Aussagen zu bestĂ€tigen, dass solche Komplexe nicht stabil seien. Schliesslich konnten wir nach D1-Anregung eine dritte, sehr schwache Linie bei 10160 cm-1 nachweisen, welche sich dem Zerfall von Cs(A∏1/2)He2 zuordnen lĂ€sst. Ein weiteres Thema der vorliegenden Arbeit ist die Untersuchung von Multi-Photonen- Prozessen in der Zeeman-Struktur des Grundzustandes von CĂ€sium in festem Helium. Die benutzte experimentelle Technik ist, wie im Tomographie-Experiment, die optisch-detektierte Magnetresonanz (ODMR). In dieser wird zirkular polarisiertes Laserlicht sowohl zur PrĂ€paration von Spinpolarisation als auch zum Nachweis von MagnetresonanzĂŒbergĂ€ngen benutzt. Die be- trachteten Multi-Photonen-ÜbergĂ€nge sind Prozesse, in denen mehrere Photonen gleichzeitig bei MagnetresonanzĂŒbergĂ€ngen beteiligt sind. Sie werden nachweisbar, wenn die magnetischen UnterzustĂ€nde durch den quadratischen Zeeman-Effekt aufgespalten sind. Die langen Spinrelaxationszeiten von Cs in festem Helium erlauben uns, diese ÜbergĂ€nge auch bei kleinen magnetischen Feldern (1 mT) auflösen zu können. Wir beobachteten alle erlaubten Multi-Photonen-ÜbergĂ€nge bis zum 8-PhotonenĂŒbergang im F = 4 Hyperfeinmultiplet. Multi- Photonen-ÜbergĂ€nge können in der Magnetometrie, in der UnterdrĂŒckung systematischer Effekte in EDM-Experimenten Anwendung finden und sie mögen darĂŒber hinaus zur Identifikation von Relaxationsprozessen in dotierten Heliumkristallen dienen. Die Demonstration des letzteren ist jedoch zur Zeit noch durch inhomogene Linienverbreitungen verhindert. Wir verglichen unsere experimentellen Spektren mit theoretischen, die wir aus der numerischen Lösung der Liouville-Gleichung unter BerĂŒcksichtigung des optischen Pumpens und der Wechselwirkung mit dem statischen und dem oszillierenden Feld erhalten haben. Die experimentellen Daten sind sehr gut wiedergegeben, wenn magnetische FeldinhomogenitĂ€ten von 2 ‱ 10-5 angenommen werden. ZusĂ€tzlich haben wir theoretische Studien des Einflusses stochastischer Störungen definierter Multipolordnung auf die Multi-Photon-KohĂ€renzen durchgefĂŒhrt. Es wurden algebraische sowie numerische Resultate fĂŒr dipolare und quadrupolare Störungen erzielt, welche in Zukunft helfen können, den Spinrelaxationsmechanismus in Heliumkristallen zu identifizieren. Das ursprĂŒngliche und weiterhin verfolgte Ziel des Heliumexperiments ist der Nachweis eines permanenten elektrischen Dipolmoments (EDM) von CĂ€sium. Dieser Nachweis wĂ€re ein direkter Beleg fĂŒr Zeitumkehrverletzung in einem atomaren System. EDM-Experimente suchen nach einer linearen Stark-Verschiebung schmalbandiger Magnetresonanzlinien. Die notwendige experimentelle Voraussetzung langer Spinrelaxationszeiten sowie die Möglichkeit hohe elektrische Felder anlegen zu können, sind in unserem Experiment gegeben. Es wird kurz ein Aufbau zur DurchfĂŒhrung von Magnetresonanzexperimenten bei gleichzeitig angelegten hohen elektrischen Feldern demonstriert. Elektrische Felder von bis zu 30 kV/cm konnten bisher angelegt werden. Technische Probleme verhinderten jedoch bisher aussagekrĂ€ftige Stark-Effekt-Messungen.The present thesis has resulted from my research work carried out at the University of Bonn and at the University of Fribourg. The thesis can be roughly divided into two distinct parts, which reflect the research carried out in both places. In Bonn I worked on optical magnetic resonance tomography of atoms in the gas phase, while all of my time in Fribourg was devoted to study specific problems of foreign atoms trapped in solid helium crystals. The results are given in terms of five publications (two published, 2 accepted for publication and one in the process of being submitted). The magnetic resonance tomography discussed in the first part is a novel technique, which allowed us the two-dimensional imaging of the motion of spin-polarized alkali atoms in a buffer gas using magnetic resonance spectroscopy combined with optical preparation and optical read-out. I have applied this novel technique to study the diffusion of cesium atoms in a gas of neon atoms, and to determine the diffusion coefficient D0 of that motion to be 0.20(1) cm2/s in standard conditions. The second and main part of this work presents research on the optical and magneto-optical properties of cesium atoms trapped in solid 4He. The experiments were performed either in the hexagonal close-packed (hcp) or in the body-centered cubic (bcc) phase of solid helium. The matrix-isolated cesium atoms reside in bubble-like cavities, which have a spherical shape, when the atom is in its radially symmetric 6S1/2 ground state. The spherical symmetry and the purely none-magnetic properties of helium make that extremely long electron spin relaxation times (≈ 1s) of the cesium atoms can be observed in the isotropic bcc phase. On the other hand, magnetic resonance lines measured in the hcp phase are significantly broader (by three orders of magnitude) and show a complex substructure due to a small deformation of the bubble shape. There was a long standing mystery in the literature regarding the fluorescence of alkali atoms in condensed helium: while the heavy alkalis Cs and Rb emitted fluorescence light, no fluorescence could be detected from the lighter alkali atoms, and it was commonly accepted that the emission is quenched by the formation of exciplex molecules, i.e., bound states of excited alkali atoms and one or several helium atoms. It was also believed that such exciplexes would not exist for cesium. In the present work the research was extended to the investigation of the atomic D2-excitation and to a detailed study of the subconsequent deexcitation of the 6P3/2 state. No direct D2 emission had been observed in the past. Only a weak D1 emission following the D2 excitation was detected indicating the existence a quenching channel to the 6P1/2 state. By extending the wavelength range of our detection system two new, broad and intense emission lines were discovered at 7130 cm-1 and 10520 cm-1. The energetically higher emission line was recently also observed in a cold helium gas environment and in liquid helium by a group at Kyoto University. The origin of this line could be attributed to the decay of Cs*He2 exciplexes, where the electronic state of this complex is denoted as A∏3/2 in molecular spectroscopic notation. The second line could not be observed in He gas nor in liquid He and may occur in a solid helium environment only. In order to assign the new lines to specific exciplex structures we have performed model calculation of the emission spectra of decaying Cs*Hen exciplexes using semi- empirical Cs-He pair potentials. By comparison with the experimental data it could be confirmed that the first emission line corresponds indeed to the decay of Cs*He2. The energetically lower second line originates from a different exciplex. Our calculations suggest that the corresponding structure consist of an excited cesium atom of dumbbell-like shaped electronic configuration with a ring of n helium atoms bound around its waist. The exact number n of bound helium atoms could not definitely assigned, because of a lacking precision of the calculation. However, Cs*He6 seems to be the most probable candidate with our present knowledge. Cs*Hen exciplexes with n > 2 were not observed previously, thus seemingly confirming statements found in the literature that these complexes are not stable. Finally, a third, very faint emission line was discovered at 10160 cm-1, which could be attributed to the decay of Cs*He2 from the electronic A∏1/2 state. This line was observed following D1-excitation. Another part of the present work is the study of multi-photon processes in the magnetic resonance spectra in the ground state of cesium atoms trapped in solid helium. The experimental technique used in these experiments as in the tomography experiments is optically-detected magnetic resonance. In this technique resonant circularly polarized laser light is used both to spin polarize the sample and to detect magnetic resonance transitions. Multi-photon transitions, i.e. processes in which several radio-frequency photons are absorbed simultaneously in the magnetic resonance transition, were in the focus of interest. These processes become observable when the magnetic sublevels are split by the quadratic Zeeman effect. The long relaxation times of spin coherences of Cs in solid He allowed us to spectrally resolve such transitions in fields as low as 1 mT. We have observed all allowed multi-photon transitions up to the ∆M = 8 transition in the F = 4-state. Multi-photon transitions can find applications in magnetometry, in the suppression of systematic effects in edm experiments and may further allow one to study relaxation phenomena in doped He crystals. The demonstration of this latter feature is still hindered by inhomogeneous line broadening. We compare our experimental spectra with theoretical spectra obtained from numerical solutions of the Liouville equation including optical pumping and the interaction with the static and oscillating fields. The experimental spectra are very well described when allowing in the calculations for a magnetic field inhomogeneity of 2 ‱ 10-5. We have also performed a theoretical study of the influence of stochastic perturbations of given multipole orders on the various multi-photon coherences. Algebraic and numerical results for perturbations of both dipolar and quadrupolar symmetry were obtained, which may in future help to identify the mechanism governing spin relaxation in helium crystals. The original idea behind the study of alkali doped helium crystals, pursued in our group since almost a decade, is to design a novel technique to search for a permanent electric dipole moment (edm) of cesium. The existence of such an edm would be a direct proof of a violation of time reversal symmetry (T-violation) in an atomic system. Edm experiments search for a linear Stark shift of a very narrow magnetic resonance line. The necessary experimental conditions of long spin relaxation times and the possibility to apply high electric fields are both fulfilled by atoms trapped in helium crystals. A setup for performing magnetic resonance experiments in the presence of strong electric fields is shortly presented in the work. Electric fields up to 30 kV/cm could be applied in our samples. Because of technical problems Stark effect studies has not led to conclusive results yet

    Laser-pumped cesium magnetometers for high-resolution medical and fundamental research

    Get PDF
    Laser-pumped cesium magnetometers allow highly sensitive magnetometry at room temperature. We report on applications of that technique in biomagnetic diagnostics and in a neutron electric dipole moment (nEDM) experiment. In the biomagnetic application the magnetic field from the beating human heart is detected using a gradiometer, which reaches an intrinsic sensitivity of 80 fT/Hz1/2. The device can record time-resolved magnetic field maps above the human body surface with a spatial resolution of 4 cm and its performance is comparable to commercial devices based on the SQUID technique. In the nEDM experiment laser-pumped cesium magnetometers are used to measure and stabilize a dc magnetic field at a level of 10⁻⁷. Those devices reach an intrinsic sensitivity of about 14 fT/Hz1/2 with a measurement bandwidth of 1 kHz. The general principle of operation and specific results are presented

    A high-sensitivity laser-pumped M<sub>x</sub> magnetometer

    Get PDF
    We discuss the design and performance of a laser-pumped cesium vapor magnetometer in the Mx configuration. The device will be employed in the control and stabilization of fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron. We have determined the intrinsic sensitivity of the device to be 15 fT in a 1 Hz bandwidth, limited by technical laser noise. In the shot noise limit the magnetometer can reach a sensitivity of 10 fT in a 1 Hz bandwidth. We have used the device to study the fluctuations of a stable magnetic field in a multi-layer magnetic shield for integration times in the range of 2–100 seconds. The residual fluctuations for times up to a few minutes are traced back to the instability of the power supply used to generate the field

    Comparison of Magnetocardiographic Mapping with SQUID-based and Laser-pumped Magnetometers in Normal Subjects

    No full text
    From the point of view of the average clinician, an ideal instrument for magnetocardiographic mapping (MCG) should be multichannel, easy to operate and maintainance-free, low cost, and reliable at patient bedside. Presently available systems for multichannel magnetocardiography are based on SQUID technology, which is expensive and implies the additional difficulty and cost of continuous system refrigeration with liquid helium. Also HT-SQUID technology, which would at least cut the cost of refrigeration, although rapidly progressing, is still very expensive. Recently, interesting results have been reported with a novel single-channel optical-pumping magnetometer (OPM) [1,2], which technology could simplify most of the above mentioned problems. However so far preliminary measurementes with the OPM were carried out in a non clinical environment Therefore it was necessary to validate their quality and reproducibility through comparison with recordings carried out in the same subjects with a multichannel MCG system designed for clinical use in an unshielded hospital environment. This has been the aim of our cooperative pilot study, which preliminary results are reported here

    PTR/PTB: 125 Jahre metrologische Forschung (Auszug aus: PTB-Mitteilungen 2012, Band 122, Heft 2. ISSN 0030-834X)

    No full text
    PTB-Mitteilungen. Band 122 (2012), Heft 2. ISSN 0030-834X1.: Göbel, Ernst O.: Vorwort. 2.: Buck, Wolfgang: Die Intention. 3.: Rechenberg, Helmut: Helmholtz und die GrĂŒnderjahre. 4.: Hollandt, Jörg: Der Schwarze Körper und die Quantisierung der Welt. 5.: Wynands, Robert: Das Kuratorium. 6.: Buck, Wolfgang: Neue Physik und neue Struktur. 7.: Hoffmann, Dieter: Der Fall Einstein. 8.: Buck, Wolfgang: Die „Verschmelzung“ von RMG und PTR. 9.: Hoffmann, Dieter: Die Physikalisch-Technische Reichsanstalt im Dritten Reich. 10.: Hoffmann, Dieter: PTR, PTA und DAMG: die Nachkriegszeit. 11.: Ulbig, Peter und Roman Schwartz: Das gesetzliche Messwesen und die OIML. 12.: Schmid, Wolfgang: EuropĂ€ische Metrologie. 13.: Kind, Dieter: Die Wiedervereinigung der Metrologie in Deutschland. 14.: Schwartz, Roman und Harald Bosse: Die PTB − metrologischer Dienstleister und Partner fĂŒr Industrie, Wissenschaft und Gesellschaft. 15.: Göbel, Ernst O. und Jens Simon: Die PTB im 21. Jahrhundert. 16.: Autoren. 17.: Bildnachweis
    corecore